Carbon–Carbon Bond Activation by Rhodium(I) in Solution. Comparison of sp²–sp³ vs sp³–sp³ C–C, C–H vs C–C, and Ar–CH₃ vs Ar–CH₂CH₃ Activation

Milko E. van der Boom, Shyh-Yeon Liou, Yehoshoa Ben-David, Michael Gozin, and David Milstein*

Contribution from the Weizmann Institute of Science, Department of Organic Chemistry, Rehovot 76100, Israel

Received July 6, 1998

Abstract: Reaction of [RhClL₂]₂ (L = cyclooctene or ethylene) with 2 equiv of the phosphine {1-Et-2,6-(CH₂P^tBu₂)₂C₆H₃} (1) in toluene results in a selective metal insertion into the strong Ar–Et bond. This reaction proceeds with no intermediacy of activation of the weaker sp³–sp³ ArCH₂–CH₃ bond. The identity of complex Rh(Et){2,6-(CH₂P^tBu₂)₂C₆H₃}Cl (3) was confirmed by preparation of the iodide analogue **6** by reaction of the new Rh(η^1 -N₂){2,6-(CH₂P^tBu₂)₂C₆H₃} (7) with EtI. It is possible to direct the bond activation process toward the benzylic C–H bonds of the aryl–alkyl group by choice of the Rh(I) precursor, of the substituents on the phosphorus atoms ('Bu vs Ph), and of the alkyl moiety (Me vs Et). A Rh(III) complex which is analogous to the product of insertion into the ArCH₂–CH₃ bond (had it taken place) was prepared and shown not to be an intermediate in the Ar–CH₂CH₃ bond activation process. Thus, aryl–C activation by Rh(I) is kinetically preferred over activation of the alkyl–C bond in this system. Moreover, cleavage of an Ar–CH₂CH₃ bond, followed by β -H elimination, may be preferred over sp²–sp³ C–C activation of an Ar–CH₃ group.

Introduction

The insertion of transition metal complexes into C–C bonds in solution is a topic of much current interest.¹⁻²⁰ We have reported transition metal insertion into strong C–C single bonds in solution and details related to the mechanism of these

* To whom correspondence should be addressed. Fax: +972-8-9344142. E-mail: comilst@wiccmail.weizmann.ac.il.

(1) Crabtree, R. H. Chem. Rev. 1985, 85, 245.

- (2) For a review, see: Rybtchinski, B.; Milstein, D. Angew. Chem. Int. Ed., in press.
- (3) Suggs, J. W.; Jun, C.-H. J. Chem. Soc., Chem. Commun. 1985, 92.
 (4) Perthuisot, C.; Jones, W. D. J. Am. Chem. Soc. 1994, 116, 3647.
- (5) Perthuisot, C.; Edelbach, B. L.; Zubris, D. L.; Jones, W. D. *Organometallics* **1997**, *16*, 2016.
- (6) Fujimura, F.; Aoki, S.; Nakamura, E. J. Org. Chem. 1991, 56, 2809.
 (7) Suzuki, H.; Takaya, Y.; Takemori, T. J. Am. Chem. Soc. 1994, 116, 10779.
- (8) Lu, Z.; Jun, C.-H.; de Gala, S. R.; Sigalas, M.; Eisenstein, O.; Crabtree, R. H. Organometallics **1995**, *14*, 1168.
- (9) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc. 1998, 120, 2843.
- (10) Huffman, M. A.; Liebeskind, L. S. J. Am. Chem. Soc. 1991, 113, 2771.
- (11) Nicholls, J. C.; Spencer, J. L. Organometallics 1994, 13, 1781.
- (12) Murakami, M.; Amii, H.; Shigeto, K.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 8285.
- (13) Murakami, K.; Takahasi, K.; Amii, H.; Ito, Y. J. Am. Chem. Soc. **1997**, *119*, 9307.
- (14) Crabtree, R. H.; Dion, R. P.; Gibboni, D. J.; McGrath, D. V.; Holt, E. M. J. Am. Chem. Soc. **1986**, 108, 7222.
- (15) Kang, J. W.; Moseley, K.; Maitlis, P. M. J. Am. Chem. Soc. 1969, 91, 5970.
- (16) Eilbracht, P. Chem. Ber. 1976, 109, 1429.
- (17) Jones, W. D.; Maguire, J. A. Organometallics 1987, 6, 1301.
- (18) Benfield, F. W. S.; Green, M. L. H. J. Chem. Soc., Dalton Trans. 1974, 1324.
- (19) Hemond, R. C.; Hughes, R. P.; Locker, H. B. Organometallics 1986, 5, 2391.
- (20) Yeh, W.-Y.; Hsu, S. C. N.; Peng, S.-M.; Lee, G. H. Organometallics 1998, 17, 2477.

reactions.^{21–29} Recently, we observed catalytic activation of a strong C–C single bond²⁸ and an unprecedented oxidative addition of a C–C bond of a fluorinated organic substrate.²⁹ We report here a system that allows the direct observation of an oxidative addition of a strong sp²–sp³ Ar–Et bond to Rh-(I), affording a new unsaturated Rh(III)–ethyl complex, which upon heating undergoes slow β -H elimination. We also qualitatively compare sp²–sp³ vs sp³–sp³ C–C, C–H vs C–C, and Ar–CH₃ vs Ar–CH₂CH₃ carbon–carbon bond activation. Part of this work has been communicated.²⁵

Results and Discussion

Preparation of Substrates. The new aryl-ethyl phosphines **1** and **2** were prepared in order to explore the possibility of competitive activation of unstrained sp^2-sp^3 and sp^3-sp^3 C-C single bonds. The synthesis of substrates **1** and **2** is similar to that of other PCP-based ligands.^{26,30-33} It consists of lithiation

- (21) Gozin, M.; Weisman, A.; Ben-David, Y.; Milstein, D. Nature 1993, 699.
- (22) Gozin, M.; Aizenberg, M.; Liou, S.-Y.; Weisman, A.; Ben-David, Y.; Milstein, D. *Nature* **1994**, 370.
- (23) Gandelman, M.; Vigalok, A.; Shimon, L. J. W.; Milstein, D. Organometallics 1997, 16, 3981.
- (24) Liou, S.-Y.; Gozin, M.; Milstein, D. J. Am. Chem. Soc. 1995, 117, 9774.
- (25) Liou, S.-Y.; Gozin, M.; Milstein, D. J. Chem. Soc., Chem. Commun. 1995, 1965.
- (26) Rybtchinski, B.; Vigalok, A.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 1996, 118, 12406.
- (27) van der Boom, M. E.; Kraatz, H.-B.; Ben-David, Y.; Milstein, D. J. Chem. Soc., Chem. Commun. 1996, 2167.
- (28) Liou, S.-Y.; van der Boom, M. E.; Milstein, D. Chem. Commun. 1998, 687.
- (29) van der Boom, M. E.; Ben-David, Y.; Milstein, D. Chem. Commun. 1998, 917.
- (30) Moulton, C. J.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1976, 1020.

Scheme 1

Scheme 2

of 2-bromo-1,3-dimethylbenzene, coupling with ethyl bromide, bromination, and reaction with $HP^{i}Bu_{2}$ or $LiPPh_{2}$ (Scheme 1). Compounds **1** and **2** were obtained as white powders and were characterized by ¹H, ³¹P, and ¹³C NMR.

Ar-CH₂CH₃ vs ArCH₂-CH₃ Activation with 1. Reaction of the alkene complex $[RhClL_2]_2$ (L = ethylene or cyclooctene) with 2 equiv of **1** in toluene at 120 °C (5 min in a sealed tube) resulted in quantitative formation of the new pentacoordinated Rh(III)-ethyl complex 3 by selective oxidative addition of the strong sp^2-sp^3 C-C bond (compare bond dissociation energy (BDE) of Ph-Et = 96.3 ± 1 kcal/mol; Scheme 2).³⁴ Complex 3 was characterized by various NMR techniques (vide infra). Thermolysis of 3 in toluene at 120 °C overnight resulted in the quantitative formation of ethylene and the known Rh(III)hydride complex 4,^{30,35} which was unambiguously identified by ¹H and ³¹P NMR and by comparison with an authentic sample. The ethylene was observed by ¹H NMR and was collected by standard vacuum line techniques and identified and quantified by GC. Using deuterated toluene, no Rh(III)-D formation was observed by ²H NMR, indicating that the solvent does not contribute to the Rh(III)-H formed. Oxidative addition of a strong Ar-CH₃ single bond to Rh(I) in solution was observed in our group with other PCP-type systems.^{21,22,24–26,28,29} Very recently, we observed metal insertion into the strong sp^2-sp^3 Ar-O bond of an aryl ether 5,^{32,36} which probably occurs via an (unobserved) oxidative addition product Rh(OMe){2,6-(CH₂P^tBu₂)₂C₆H₃}Cl (A) followed by β -hydride elimination to give formaldehyde and 4 (Scheme 2).

To confirm the identity of 3, we prepared the iodide analogue 6 by EtI oxidative addition to the new dinitrogen complex 7. Reaction of 3 with an excess of NaH in THF under nitrogen at room temperature led to the quantitative formation of the Rh-

- (33) Weisman, A.; Gozin, M.; Kraatz, H. B.; Milstein, D. Inorg. Chem. 1996, 35, 1792.
- (34) Egger, K. W.; Cocks, A. T. Helv. Chim. Acta 1973, 56, 1516.
- (35) Details about this β -H elimination process will be reported in a forthcoming paper.
- (36) van der Boom, M. E.; Liou, S.-Y.; Ben-David, Y.; Vigalok, A.; Milstein, D. Angew. Chem., Int. Ed. Engl. 1997, 36, 625.

Scheme 4

(I)-dinitrogen complex 7 and ethane (Scheme 3).³⁷ The ethane was collected by standard vacuum line techniques and analyzed by GC. The air-sensitive complex 7 was characterized by ¹H, ³¹P, and ¹³C NMR and IR. It exhibits spectroscopic properties similar to those of its iridium analogue (vide infra).³⁸ No THF coordination was observed in the ¹H NMR, probably as a result of the bulky tert-butyl substituents on the phosphorus atoms.^{32,39} η^1 -N₂ binding to similar *tert*-butyl PCP-Rh(I) complexes competes favorably with CO₂ and even with ethylene.³⁹ Treatment of 7 with 1 equiv of EtI in toluene or dioxane at room temperature led to the selective formation of 6 in excellent yield (\sim 95%). The reaction was completed within 10 min, and no intermediates were observed by ¹H and ³¹P NMR. As observed for 3, thermolysis of the product solution at 120 °C overnight resulted in the quantitative formation of the iodide analogue of 4 (by ¹H, ³¹P, and ¹³C NMR) and ethylene (by ¹H NMR and GC).35

Mechanistically, coordination of 1 to the metal center is likely to precede the Ar–C bond cleavage step (Scheme 4, **B**). Coordination of both phosphine arms to the metal center was postulated for the Ar–H,³⁰ Ar–OMe (5, Scheme 2),^{32,36} Ar– CH₃ (8, Scheme 5),²⁶ and Ar–CF₃²⁹ analogues of 1 with rhodium(I) and iridium(I) and was observed for similar substrates with platinum(II)⁴⁰ and ruthenium(II).⁴¹ Performing the reaction (1 → 3) at room temperature resulted in the formation of oligomers, as indicated by ¹H and ³¹P NMR spectroscopy,

⁽³¹⁾ Rybtchinski, B.; Ben-David, Y.; Milstein, D. Organometallics 1997, 16, 3786.

⁽³²⁾ van der Boom, M. E.; Liou, S.-Y.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. **1998**, *120*, 6531.

⁽³⁷⁾ This compound was probably observed by Kaska et al. in a nonselective dehydrochlorination reaction of **4** with NaN(SiMe₃)₂.⁴³

⁽³⁸⁾ Rybtchinski, B. M.Sc. Thesis, The Weizmann Institute of Science, Rehovot, Israel, 1996.

⁽³⁹⁾ Vigalok, A.; Ben-David, Y.; Milstein, D. Organometallics 1996, 15, 1839.

⁽⁴⁰⁾ van der Boom, M. E.; Gozin, M.; Ben-David, Y.; Shimon, L. J. W.; Frolow, F.; Kraatz, H. B.; Milstein, D. *Inorg. Chem.* **1996**, *35*, 7068.

⁽⁴¹⁾ Dani, P.; Karlen, T.; Gossage, R. A.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. **1997**, 119, 11317.

which probably collapsed to monomeric species upon heating. Former studies in our group have shown that coordination of similar di-*tert*-butyl phosphines such as **8** to Rh(I) and Ir(I) complexes occurs at room temperature and controls the overall rate in the activation of an Ar–CH₃ bond (Scheme 5).²⁶ Likewise, substitution of the olefin (cyclooctene or ethylene) by **1** is probably slow relative to the bond activation. No complexes resulting from C–H or sp³–sp³ C–C activation (**D**, **C**; Scheme 4) were observed in the reaction of **1** with [RhClL₂]₂ (L = cyclooctene or ethylene) by ¹H and ³¹P NMR.

To evaluate whether activation of the weaker sp³-sp³ C-C bond ($\Delta BDE\{Ph-CH_2CH_3 - PhCH_2-CH_3\} = 24.5 \text{ kcal/}$ mol)^{34,42} is an intermediate step in the observed sp^2-sp^3 C–C activation process or perhaps a reversible parallel process (C, Scheme 4), $[RhCl(C_8H_{14})_2]_2$ (C₈H₁₄ = cyclooctene) was reacted with 2 equiv of 1 in C₆D₆ under H₂ (20 psi) at 120 °C for 16 h in a Fischer Porter pressure vessel. Analysis of the reaction solution by ¹H and ³¹P NMR showed exclusive formation of the known Rh(III)-hydride complex 4,³⁰ which was identical to an authentic sample. GC analysis of the gas phase showed formation of ethane (~90%). Only traces of methane were observed (<4%), providing evidence that sp³-sp³ C-C cleavage is not involved either on the reaction coordinate or as a side equilibrium. A pathway involving stepwise sp³-sp³, sp²sp³ C-C bond cleavage generating 2 equiv of CH₄ and 4 would have been thermodynamically more favorable.^{25,34} Thus, in this system, sp²-sp³ C-C bond activation is kinetically preferred over that of a sp^3-sp^3 C-C bond.

The possibility of a side equilibrium involving C-H activation (D, Scheme 4) cannot be ruled out. However, under appropriate conditions, C-C activation can be kinetically and thermodynamically more favorable than C-H activation.^{23,26} Rhodium insertion into an Ar-CH3 bond becomes more favorable as compared with insertion into an ArCH2-H bond when higher electron density is involved.²⁴ The reaction of $[RhCl(C_2H_4)_2]_2$ with ligand 8, having electronic and steric properties similar to those of 1, resulted in competitive C-H and C-C oxidative addition at room temperature (Scheme 5).²⁶ In a slower process, 9 undergoes C-H reductive elimination, followed by C-C oxidative addition, to give 10 quantitatively. It is expected that, in the Ar-Et system, 1, having only two benzylic C-H bonds and considering more steric hindrance imposed by the methyl group, the C-C cleavage is even more competitive with C-H activation.

Identification of Complexes 3, 6, and 7. Complexes 3 and 6 were unequivocally characterized by various NMR techniques and exhibit nearly identical spectroscopic properties. Assignments in the ¹H and ¹³C{¹H} NMR spectra were made using ¹H{³¹P}, ¹H-¹H COSY, NOESY, and ¹³C-DEPT-135 NMR. In the ³¹P{¹H} NMR spectrum of 3, one doublet resonance appears at δ 54.99 with ¹J_{RhP} = 123.8 Hz, indicating that both

Figure 1. NOE interactions detected for 3.

phosphorus atoms are magnetically equivalent and coordinated to a Rh(III) center. The structure of **3** is fully supported by 1 H and ¹³C NMR. For instance, the Rh $-CH_2$ CH₃ group appears in the ¹³C{¹H} NMR spectrum as a double triplet at δ 16.83, with ${}^{1}J_{RhC} = 29.1$ Hz and cis ${}^{2}J_{PC} = 4.9$ Hz. The Rh-CH₂CH₃ group appears as a doublet at δ 23.61, with ${}^{2}J_{RhC} = 1.4$ Hz. In the ¹H NMR spectrum, this alkyl group appears as a double triplet at δ 1.24 (3H), with ${}^{3}J_{\text{RhH}} = 2.3$ Hz and ${}^{3}J_{\text{HH}} = 7.2$ Hz, and as a multiplet at δ 2.40 (2H), with ${}^{2}J_{\text{RhH}} = 2.8$ Hz, ${}^{3}J_{\text{HH}} =$ 7.2 Hz, and cis ${}^{3}J_{\rm PH} = 7.1$ Hz. From the NOESY spectrum, it is possible to unambiguously assign the ¹H NMR resonances for 3 and to show that the structure in solution has the ethyl group cis to the aryl group (Figure 1; NOE cross-peaks are seen between H_a and ^tBu_a, between H_b and the CH_2CH_3 , and between ^tBu_b and the CH_2CH_3). In the ¹H NMR spectrum of 6, the CH₃ and CH₂ resonances of the ethyl ligand appear at δ 0.89 and 2.38, respectively, and two sets of resonances are seen for the protons of the ^tBu groups and the CH₂ "arms" of the PCP ligand. When the $RhCH_2CH_3$ protons of 6 were irradiated, selective enhancement of the RhCH₂CH₃ signal was observed. A doublet is observed in the ${}^{31}P{}^{1}H$ NMR spectrum of 6 at δ 52.75, with ${}^{1}J_{\text{RhP}} = 122.5$ Hz. The similarities in the ${}^{13}\text{C}$ NMR chemical shifts of the ipso-carbons to those of analogous rhodium aryl halide complexes where the X-ray structure is known, Rh(H)- $\{2,6-(CH_2P^tBu_2)_2C_6H_3\}Cl(4)(\delta 166.85),^{43}Rh(Me)\{2,6-(CH_2P^t-M_$ $Bu_{2}_{2}-3.5-(CH_{3})_{2}-C_{6}H$ Cl (10) (δ 168.80), ²⁶ Rh(Me) {2-(CH_{2}P^{t}-Bu₂)-6-(CH₂N(C₂H₅)₂-3,5-(CH₃)₂-C₆HCl (δ 170.04),²³ and **3** (δ 167.57), indicate that the aryl group is directly bound to the metal center trans to the halide ligand. It is known that ¹³C NMR spectroscopy is a sensitive tool for analyzing electronic trends in aryl-bound complexes.^{33,44} Thus, for 3 and 6, the strongest trans director, the ethyl ligand, is trans to the vacant coordination site, in agreement with crystal structures of analogous square-pyramidal PCP- and PCN-type rhodium(III) and iridium(III) complexes.^{23,26,38,43,45,46} Theoretical studies predict that the square-pyramidal geometry is preferred for fivecoordinated d⁶ complexes.⁴² The air-sensitive dinitrogen complex 7 is unequivocally characterized by ¹H, ³¹P{¹H}, and ¹³C{¹H} NMR and IR.³⁷ The ¹H NMR spectrum shows two 1:2:1 triplet resonances for the ^tBu and benzylic protons at δ 1.26 and 3.15 ($J_{PH} = 6.3$ and 3.7 Hz), respectively, which collapse into singlets upon phosphorus decoupling. The ³¹P- ${}^{1}H$ spectrum exhibits a doublet resonance at δ 81.01 $({}^{1}J_{RhP})$ = 157.9 Hz), indicative of two magnetically equivalent phosphorus nuclei coordinated to a Rh(I) center. The Rh $-\eta^1$ -N₂ moiety of 7 exhibits a characteristic band in the IR spectrum at

⁽⁴³⁾ Nemeh, S.; Jensen, C.; Binamira-Soriaga, E.; Kaska, W. C. Organometallics 1983, 2, 1442.

⁽⁴⁴⁾ Van de Kuil, L. A.; Luitjes, H.; Groves, D. M.; Zwikker, J. W.; Van der Linden, J. G. M.; Roelofsen, A. M.; Jenneskens, L. W.; Drenth, W.; van Koten, G. *Organometallics* **1994**, *13*, 468.

⁽⁴⁵⁾ Crocker, C. J.; Errington, R. J.; McDonald, W. S.; Odell, K. J.; Shaw, B. L. J. Chem. Soc., Chem. Commun. **1979**, 498.

⁽⁴⁶⁾ Crocker, C. J.; Empsall, H. D.; Errington, R. J.; Hyde, E. M.; McDonald, W. S.; Markham, R. J.; Norton, M. C.; Shaw, B. L.; Weeks, B. J. Chem. Soc., Dalton Trans. **1982**, 1217.

Scheme 6

 $\nu = 2133 \text{ cm}^{-1}$. This frequency is close to those observed for other PCP-type Rh(I) complexes: Rh(η^{1} -N₂){HC(CH₂CH₂Pt⁴Bu₂)₂},³⁹ Rh(η^{1} -N₂){CH₃C(CH₂CH₂Pt⁴Bu₂)₂},⁴⁷ Rh(η^{1} -N₂){1-O-2,6-(CH₂Pt⁴Bu₂)₂-4-CH₃-C₆H₂},³² and it is indicative of an "end-on" coordinated dinitrogen complex.^{48,49} Very recently, the X-ray structures of [Ir{2,6-(CH₂Pt⁴Bu₂)₂C₆H₃]₂-(μ -N₂),⁵⁰ [Rh-{1-O-2,6-(CH₂Pt⁴Bu₂)₂-4-CH₃-C₆H₂]₂-(μ -N₂),³² and Rh(η^{1} -N₂){CH₃(CH₂CH₂Pt⁴Bu₂)₂]⁴³ were reported. The N₂ ligand of **7** is readily displaced by CO, affording the carbonyl complex Rh(CO){2,6-(CH₂Pt⁴Bu₂)₂C₆H₃}, with ¹H and ³¹P NMR and IR spectra identical to those reported in the literature.³⁰

C-H vs C-C Activation. Interestingly, it is possible to direct the bond activation process toward the benzylic protons of the ethyl group by choice of the rhodium(I) precursor and the substituents on the phosphorus atoms (Scheme 6). As recently communicated,²⁵ reaction of HRh(PPh₃)₄ or PhRh-(PPh₃)₃ with 2 yields the chiral product of C-H activation 12 (Scheme 6), which is analogous to the unobserved **D** (Scheme 4). Reaction of 12 with H₂ (20 psi) at 120 °C resulted in formation of ethane (95% by GC) and 13, which was unambiguously identified by ¹H, ³¹P, and ¹³C NMR and by comparison with an authentic sample.²⁵ The mechanism of the hydrogenolysis of 12 is probably similar to the one reported for the hydrogenolysis of an analogous benzylic Rh(I) complex.²¹ Interestingly, thermolysis of **12** at 120 °C in toluene in the absence of H₂ resulted in the quantitative formation of ethylene and 13. We believe that 12 undergoes (reversible) β -H elimination, giving a Rh(I)-H species E. Metal insertion into

the sp²-sp² Ar-C bond followed by C-H elimination and phosphine coordination affords the observed ethylene and **13**. It is known that [Rh(η^{1} -N₂){CH₃C(CH₂CH₂P⁴Bu₂)₂}] undergoes reversible β -hydride elimination upon N₂ dissociation.⁴⁷ While the activation of the C-C bond of biphenylene is known,^{4,5,8,20} activation of an unstrained sp²-sp² C-C bond in solution has not been reported. Regardless of the mechanism involved, in both systems **1** and **2**, exclusive sp²-sp³ C-C bond cleavage with Rh(I) was observed, showing that this selective bond activation process can take place with significantly different electron density and bulk at the metal center. In system **2**, benzylic C-H activation is kinetically favored over C-C activation.

Ar-CH₂CH₃ vs Ar-CH₃ Activation. Interestingly, reaction of 14 with ClRh(PPh₃)₃ results in quantitative C-H

activation, forming the thermally stable **15** (up to 150 °C),²⁴ while reaction of **2** with ClRh(PPh₃)₃ (at 120 °C in toluene or benzene in a sealed vessel) results in C–C activation to give **16** and ethylene (91%; Scheme 7), which were identified and quantified by ¹H, ³¹P, and ¹³C NMR, IR, and X-ray analysis (vide infra) and by GC analysis of the gas phase. Using deuterated solvents, no Rh(III)–D formation was observed by ²H NMR. Very recently, we observed a similar phenomenon with Ni(II).⁵¹ Exclusive benzylic C–H activation occurs upon heating of the ⁱPr analogue of **14** with a stoichiometric amount of NiI₂ in ethanol, whereas the ⁱPr analogue of **1** and **2** favors Ar–Et activation. Thus, de-ethylation of an arene, which is presumably driven by the β -H elimination process and ethylene release, occurs more readily than Ar–Me cleavage in a similar system.

Ar-CH₂CH₃ vs ArCH₂-CH₃ Activation with 2. A consecutive sp³-sp³, sp²-sp³ C-C bond activation pathway of 2 and ClRh(PPh₃)₃ under H₂, generating CH₄ and 16, would most probably involve the intermediacy of a species such as **15** (Scheme 7). Treatment of a THF solution of **15** with H₂ (20 psi) at 80 °C resulted in the formation of methane (>90% by GC) and 17, which is analogous to 16. Dehydrochlorination of 17 with MeLi or excess KO^tBu in THF or dioxane resulted in the formation of the known Rh(I) complex Rh{2,6-(CH₂- $PPh_2)_2$ -3,5-(CH₃)₂-C₆H}(PPh₃) as judged by ¹H and ³¹P NMR.²¹ Performing the reaction of 2 with $ClRh(PPh_3)_3$ under H₂ (20) psi) resulted in the formation of ethane and 16,²⁵ which has been fully characterized by X-ray analysis (Figure 2).^{52,53} Only traces of methane were observed (<4%), indicating that the metal center activates only the sp^2-sp^3 C-C bond in the presence of H₂. Apparently, intermediates analogous to 15 are not involved.

The new benzylic Rh(III)—methyl complex **19** was prepared in order to evaluate unambiguously whether activation of the sp^3-sp^3 C–C bond of **2** occurs in the absence of H₂. Complex **19** is the iodide analogue of the expected product of Rh(I) insertion into the ArCH₂–CH₃ bond of **2** and ClRh(PPh₃)₃. Treatment of a THF solution of **15** with excess Et₃N or KO'Bu resulted in the formation of the known complex **18** (>90 and 40% yield by ¹H and ³¹P NMR, respectively), which can be obtained quantitatively by reaction of **14** with HRh(PPh₃)₄ or PhRh(PPh₃)₃ in THF at room temperature.²¹ Oxidative addition of CH₃I to **18** in toluene at room temperature in a sealed tube leads to exclusive formation of **19** and PPh₃, which were characterized by ¹H, ³¹P, and ¹³C NMR and FD-MS. The ¹H NMR shows clearly the presence of the ArCH₂Rh and Rh– CH₃ moieties, which appear at δ 2.25 (dt, ³J_{PH} = 8.3 Hz, ²J_{RhH}

⁽⁴⁷⁾ Vigalok, A.; Kraatz, H.-B.; Konstantinovsky, L.; Milstein, D. Chem. Eur. J. 1997, 3, 253.

⁽⁴⁸⁾ Busetto, C.; Dalfonso, A.; Maspero, F.; Perego, G.; Zazzetta, A. J. Chem. Soc., Dalton Trans **1977**, 1828.

⁽⁴⁹⁾ Thorn, D. L.; Tulip, T. H.; Ibers, J. A. J. Chem. Soc., Dalton Trans. 1979, 2022.

⁽⁵⁰⁾ Lee, D. W.; Kaska, W. C.; Jensen, C. M. Organometallics 1998, 17, 1.

⁽⁵¹⁾ van der Boom, M. E.; Ben-David, Y.; Milstein, D., manuscript in preparation.

⁽⁵²⁾ Gozin, M. Ph.D. Thesis, The Weizmann Institute of Science, Rehovot, Israel, 1995.

⁽⁵³⁾ A similar structure of a 3,5-lutidine-based PCP Rh(I) complex was reported recently.³³

Figure 2. ORTEP view of **16**. Selected bond lengths (Å): Rh(1)-Cl(1) = 2.514(1); Rh(1)-P(1) = 2.400(1); Rh(1)-P(2) = 2.322(1); Rh(1)-P(3) = 2.319(1); Rh(1)-C(1) = 2.090(4). Selected bond angles (deg): P(1)-Rh(1)-P(2) = 99.92(4); P(1)-Rh(1)-P(3) = 98.75(4); P(2)-Rh(1)-P(3) = 157.19(4); P(1)-Rh(1)-C(1) = 177.9(1); Cl(1)-Rh(1)-P(1) = 90.62(4); Cl(1)-Rh(1)-P(2) = 88.37(4); Cl(1)-Rh(1)-P(3) = 104.43(4); Cl(1)-Rh(1)-C(1) = 91.3(1); Rh(1)-C(1)-C(2) = 120.7(3); Rh(1)-C(1)-C(6) 121.8(3).

Scheme 8

= 1.1 Hz, 2H) and δ 1.65 (vq, ${}^{3}J_{PH}$ = 4.5 Hz, ${}^{2}J_{RhH}$ = 3.1 Hz, 3H), respectively. The ${}^{31}P\{\bar{}^{1}H\}$ spectrum exhibits a doublet resonance at δ 28.9 (¹J_{RhP} = 127.5 Hz), indicative of two magnetically equivalent phosphorus nuclei coordinated to a Rh-(III) center. The ${}^{13}C{}^{1}H$ NMR shows clearly the presence of the Rh(III)–CH₃ moiety at δ 7.90 (bd, ${}^{1}J_{RhC}$ = 30.8 Hz) and in the ¹³C-DEPT-135 NMR, a positive signal is observed, indicative of an odd number of protons. ¹³CH₃I was used as well to unambiguously assign this moiety in the ¹H and ¹³C NMR. Complex **19** is stable in solution at room temperature for 24 h but decomposes slowly upon heating of the product solution at 70 °C (in a sealed tube). However, compounds indicative of Ar-C bond cleavage such as 20 are not observed. Thus, cleavage of the ArCH₂-CH₃ bond is most probably not involved either on the reaction coordinate or as a side equilibrium in the thermolysis of 12 (Scheme 6) or in the reaction of 2 with ClRh- $(PPh_3)_3$ (Scheme 7).

Summary and Conclusions

We observed directly metal insertion into a strong Ar–CH₂-CH₃ bond prior to β -H elimination and have shown that sp²– sp³ C–C bond activation in this system is kinetically preferable to the unobserved sp³–sp³ C–C bond activation with rhodium-(I), regardless of the bulk and the electron density at the metal

center. sp³-sp³ C-C bond activation is not involved, either as a side equilibrium or as an intermediate process, even in the presence of H₂, which could have driven the overall process to a thermodynamically more favorable consecutive sp³-sp³, sp² sp^3 C–C bond activation process forming methane.^{25,34} Thus, the reason for the preference of ethane (in the presence of H_2) or ethylene formation is kinetic. The iodide analogue 19 of the expected product of metal insertion into the sp^3-sp^3 C-C bond was prepared and shown not to be an intermediate in the sp²-sp³ Ar-C bond activation process. Although the Ar-CH₂-CH₃ bond is substantially stronger than the ArCH₂-CH₃ bond (compare BDE values of Ph-CH₂CH₃ = 96.3 \pm 1 kcal/mol, PhCH₂-CH₃ = 71.8 \pm 1 kcal/mol),^{34,42} selective insertion into the Ar-C bond takes place, indicating that this process is product controlled, and it is likely that BDE(Ar-M + M-CH₂- CH_3) - BDE(ArCH₂-M + M-CH₃) > ~20 kcal/mol. The Ar-Rh bond is known to be quite strong.^{54,55} The chelate ring size formed may also play a role, although both the five- and six-membered chelates are very stable. The higher accessibility and lower directionality of the sp²-sp³ vs the sp³-sp³ C-C bond are kinetic factors that undoubtedly favor activation of the Ar-C bond. Although kinetic studies were not performed here, a mechanism involving a nonpolar three-centered transition state is likely to be operative for the Rh(I) insertion into the Ar-CH₂CH₃ bond, as shown for the direct Rh(I) insertion into the Ar-CH₃ bond of 8.²⁶ The remarkably stable unsaturated $Rh(III)-CH_2CH_3$ complexes 3 and 6, obtained by selective insertion of Rh(I) into the Ar-C bond or by oxidative addition of EtI to a dinitrogen complex 7, are isostructural with previously postulated Rh(III)-OCH₃ species A involved in Ar-O bond activation.^{32,36} It is noteworthy that sp²-sp³ C-O activation by Rh(I) in 5 is kinetically preferred over sp³-sp³ C-O bond activation, while Pd(II) exclusively activates the adjacent sp³-sp³ C-O bond.^{32,36} Our observations show that cleavage of an Ar–CH₂CH₃ bond, followed by β -H elimination, may be preferred over sp²-sp³ C-C activation of an Ar-CH₃ group. Thus, systems might be designed to selectively activate unstrained C–C bonds of substrates having β -Hs, while similar compounds—but lacking β -H's—undergo exclusively C-H activation.

Experimental Section

General Procedures. All reactions were carried out under nitrogen in a Vacuum Atmospheres glovebox (DC-882) equipped with a recirculation (MO-40) "Dri Train" or under argon using standard Schlenk techniques. Oxygen levels (<2 ppm) were monitored with Et₂Zn (1 M solution in hexane, Aldrich), and water levels (<2 ppm) were monitored with TiCl₄ (neat, BDH chemicals). Solvents were reagent grade or better, dried, distilled, and degassed before introduction into the glovebox, where they were stored over activated 4 Å molecular sieves. Deuterated solvents were purchased from Aldrich and were degassed and stored over 4 Å activated molecular sieves in the glovebox. [RhClL₂]₂ (L = cyclooctene or ethylene) was prepared by a published procedure.^{56,57} Reaction flasks were washed with deionized water followed by acetone and then oven-dried prior to use. GC analyses were performed on a Varian 3300 gas chromatograph equipped with a molecular sieve column.

Spectroscopic Analysis. The ¹H, ³¹P{¹H}, and ¹³C{¹H} NMR spectra were recorded at 400.19, 161.9, and 100.6 MHz, respectively, on a Bruker AMX 400 NMR spectrometer. ¹H, ³¹P{¹H}, and ¹³C-{¹H} spectra were also recorded at 250.17, 101.3, and 62.9 MHz,

⁽⁵⁴⁾ Martinho-Simoes, J. A.; Beauchamp, J. L. Chem. Rev. 1990, 90, 629.

⁽⁵⁵⁾ Jones, W. D.; Feher, F. J. J. Am. Chem. Soc. 1984, 106, 1650.

⁽⁵⁶⁾ Herdé, J. L.; Senoff, C. V. Inorg. Nucl. Chem. Lett. 1971, 1029. (57) Cramer, R. Inorg. Chem. 1962, 1, 722.

respectively, on a Bruker DPX 250 NMR spectrometer. All chemical shifts (δ) are reported in ppm and coupling constants (J) are in hertz. The ¹H and ¹³C NMR chemical shifts are relative to tetramethylsilane; the resonance of the residual protons of the solvent was used as an internal standard h_1 (δ 7.15 benzene; 7.26 chloroform; 7.09 toluene) and *all-d* solvent peaks (δ 128.0 benzene; 77.0 chloroform; 20.4 toluene), respectively. ³¹P NMR chemical shifts are relative to 85% H₃PO₄ in D₂O at δ 0.0 (external reference), with shifts downfield of the reference considered positive. Assignments in the ¹H and ¹³C{¹H} NMR were made using ¹H{³¹P}, ¹H–⁻¹H COSY, and ¹³C-DEPT-135 NMR. All measurements were carried out at 298 K. Ph₃PO was used as an internal standard for integration. IR spectra were recorded as films between NaCl plates on a Nicolet 510 FT spectrometer.

Formation of 1 and 2. (a) Synthesis of 2-Ethyl-1,3-dimethylbenzene. A solution of 2-bromo-1,3-dimethylbenzene (18.1 g, 97.5 mmol) in ether (20 mL) was added dropwise to a cold (0 °C) n-butyllithium solution (1.6 M in hexane, 80 mL) in a 250-mL threenecked round-bottom flask equipped with an argon inlet, dropping funnel, and magnetic bar. The resulting reaction mixture was refluxed overnight, cooled to room temperature, and filtered. The residue was washed with cold pentane $(3 \times 25 \text{ mL})$ and dried in a vacuum, affording 2-lithio-1,3-dimethylbenzene as a white solid in quantitative yield (11 g). A solution of ethyl bromide (21.3 g, 195 mmol) in THF (50 mL) was added dropwise to a stirred suspension of 2-lithio-1,3-dimethylbenzene (11 g, 97.5 mmol) in THF (150 mL) at - 60 °C in a 500-mL Schlenk flask. The reaction mixture was warmed to room temperature and stirred overnight. The THF was removed by rotary evaporation, and the residue was dissolved in CH2Cl2 (300 mL), washed with water $(3 \times 100 \text{ mL})$, and dried again. Distillation (90-92 °C/0.20 mmHg) afforded a colorless oil (4.6 g, 35%). ¹H NMR (CDCl₃): δ 6.88 (s, 3H, ArH), 2.55 (q, ${}^{3}J_{HH} = 7.5$ Hz, 2H, CH₂CH₃), 2.21 (s, 6H, CH₃), 1.01 (t, ${}^{3}J_{\text{HH}} = 7.6 \text{ Hz}$, 3H, CH₂CH₃). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CDCl₃): δ 141.5, 136.3, 128.7, 126.0 (all s, Ar), 23.2 (s, CH₂CH₃), 20.1 (s, CH₃), 13.8 (s, CH₂CH₃).

(b) Synthesis of 2-Ethyl-1,3-dibromomethylbenzene. A mixture of 2-ethyl-1,3-methylbenzene (3.6 g, 27 mmol), NBS (9.6 g, 54 mmol), and AIBN (~0.1 g) in CCl₄ (150 mL) was refluxed for 5 h in a 500mL three-necked round-bottom flask equipped with an argon inlet and condenser. After filtration, the solution was washed with water (3 \times 25 mL), treated with MgSO₄, filtered, and concentrated by rotary evaporation. The residue was stored overnight at -20 °C, affording a white lacrimatory solid which was filtered, washed with cold cyclohexane $(3 \times 25 \text{ mL})$, and dried in a vacuum (7.2 g, 91%). This product was further purified by distillation (110 °C/0.16 mmHg) and by column chromatography using hexane as eluent (3.1 g, 39%). ¹H NMR (CDCl₃): δ 7.21 (d, ${}^{3}J_{\text{HH}} =$ 7.6 Hz, 2H, ArH), 7.05 (t, ${}^{3}J_{\text{HH}} =$ 7.6 Hz, 1H, ArH), 4.43 (s, 4H, CH₂Br), 2.80 (q, ${}^{3}J_{HH} = 7.6$ Hz, 2H, CH_2CH_3), 1.21 (t, ${}^{3}J_{HH} = 7.6$ Hz, 3H, CH_2CH_3). ${}^{13}C$ NMR (CDCl₃): δ 142.4, 136.8, 131.9, 127.1 (all s, Ar), 31.7 (s, CH₂Br), 22.0 (s, CH₂-CH₃), 15.7 (s, CH₂CH₃).

(c) Phosphination. For 1: The phosphination with HP^tBu₂ to afford 1 was done according to literature procedures. 26,30,32 $^{31}P\{^{1}H\}$ (CDCl₃): δ - 31.5 (s). ¹H NMR (CDCl₃): δ 7.25 (m, 2H, ArH), 6.90 (t, 1H, ArH), 3.10 (q, 2H, ${}^{3}J_{HH} = 7.4$ Hz, CH₂CH₃), 2.82 (s, 4H, CH₂P), 1.41 (t, 3H, ${}^{3}J_{HH} = 7.5$ Hz, CH₂CH₃), 1.06 (s, 36H, C(CH₃)₃). For 2: A solution of 2-ethyl-1,3-bis(bromomethyl)benzene (1.8 g, 6.0 mmol) in THF (120 mL) was added dropwise to a cold THF solution (-78 °C, 30 mL) of LiPPh2 (2.4 g, 13 mmol) in a 250-mL three-necked round-bottom flask equipped with an argon inlet and a dropping funnel. The solution was warmed to room temperature and stirred overnight. The reaction mixture was concentrated by rotary evaporation, toluene was added (100 mL), and the solution was filtered and concentrated again. The residue was dissolved in CHCl3 (100 mL), filtered, and concentrated by rotary evaporation. The residue was recrystallized from pentane to afford a white solid 2 (2.8 g, 92%). $^{31}P\{^{1}H\}$ (CDCl₃): δ -11.7 (s). ¹H NMR (CDCl₃): δ 7.6-6.8 (m, 23H, ArH), 3.38 (s, 4H, CH₂P), 2.95 (q, ${}^{3}J_{HH} = 7.5$ Hz, 2H, CH₂CH₃), 1.34 (t, ${}^{3}J_{HH} = 7.5$ Hz, 3H, CH₂CH₃). ${}^{13}C{}^{1}H$ NMR (CDCl₃): δ 141.5–125.5 (Ar), 34.0 (d, ${}^{1}J_{PC} = 16.8$ Hz, CH₂P), 22.8 (t, ${}^{4}J_{PC} = 4.8$ Hz, CH₂CH₃), 15.3 (t, ${}^{5}J_{PC}$ = 1.8 Hz, CH₂CH₃).

Formation and Thermolysis of Rh(Et){2,6-(CH₂P^tBu₂)₂C₆H₃}Cl (2). A C₆D₆ solution (1 mL) of 1 (30 mg, 0.71 mmol) and $[RhClL_2]_2$ $(L = C_2H_4 \text{ or } C_8H_{14})$ (25 mg, 0.035 mmol) was loaded into a 5-mm screwcap NMR tube and heated for 5 min at 120 °C. The resulting deep red solution was analyzed by ¹H, ¹H{³¹P}, ¹H-¹H COSY, NOESY, ³¹P{¹H}, ¹³C{¹H}, and ¹³C-DEPT-135 NMR, showing the quantitative formation of 2 and C_8H_{14} or C_2H_4 . Continued heating for 16 h resulted in the quantitative formation of the known Rh(H){2,6-($CH_2P^{t}Bu_2$)₂C₆H₃}-Cl (4) and ethylene, as judged by ¹H and ³¹P NMR and GC.^{30,35} Addition of an authentic sample to the solution resulted in overlap of signals in ¹H and ³¹P NMR. The reaction was also performed in a sidearm flask to allow quantitative analysis of the gas phase by GC. ¹H NMR (C₆D₆): δ 1.17 (vt, ³J_{PH} = 6.0 Hz, 18H, C(CH₃)₃), 1.24 (dt, ${}^{3}J_{\text{RhH}} = 2.3 \text{ Hz}, {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 3\text{H}, \text{RhCH}_{2}\text{CH}_{3}), 1.35 \text{ (vt, } {}^{3}J_{\text{PH}} = 6.0$ Hz, 18H, C(CH₃)₃), 2.40 (m, ${}^{2}J_{RhH} = 2.8$ Hz, ${}^{3}J_{HH} = 7.2$ Hz, ${}^{3}J_{PH} =$ 7.1 Hz, 2H, RhCH₂CH₃), 3.07 (ABq, $\Delta AB = 34.0$ Hz, ${}^{2}J_{HH} = 17.6$ Hz, ${}^{2}J_{PH} = 3.5$ Hz, 4H, CH₂P), 7.0 (m, 3H, ArH). ${}^{13}C{}^{1}H$ NMR (C₆D₆): δ 16.83 (dt, ${}^{1}J_{RhC}$ = 29.1 Hz, ${}^{2}J_{PC}$ = 4.9 Hz, RhCH₂CH₃), 23.61 (d, ${}^{2}J_{RhC} = 1.4$ Hz, RhCH₂CH₃), 29.71 (vt, ${}^{2}J_{PC} = 2.2$ Hz, $C(CH_3)_3$ 31.10 (vt, ${}^{2}J_{PC} = 2.3$ Hz, $C(CH_3)_3$), 33.01 (dvt, ${}^{2}J_{RhC} = 2.7$ Hz, ${}^{1}J_{PC} = 8.9$ Hz, CH₂P), 36.49 (dvt, ${}^{2}J_{RhC} = 1.6$ Hz, ${}^{1}J_{PC} = 6.6$ Hz, $C(CH_3)_3$, 36.76 (vt, ${}^{1}J_{PC} = 7.4$ Hz, $C(CH_3)_3$), 122.88 (dt, $J_{RhC} = 1.1$ Hz, $J_{PC} = 8.6$ Hz, C_{meta}), 130.30 (s, C_{para}), 150.16 (dt, ${}^{2}J_{RhC} = 1.0$ Hz, ${}^{2}J_{\text{PC}} = 8.7$ Hz, C_{ortho}), 167.57 (dt, ${}^{1}J_{\text{RhC}} = 35.8$ Hz, ${}^{2}J_{\text{PC}} = 1.9$ Hz, C_{ipso}). ³¹P{¹H} NMR (C₆D₆): δ 54.99 (d, ¹J_{RhP} = 123.8 Hz, 2P).

Formation and Thermolysis of Rh(Et){2,6-(CH₂P^tBu₂)₂C₆H₃}I (6). EtI (3 mg, 0.019 mmol) was added to a yellow C₆D₆ solution (1 mL) of 5 (10 mg, 0.019 mmol). The red reaction solution was loaded into a 5-mm screwcap NMR tube and analyzed by ¹H, ¹H-¹H NOE, $^1H\{^{31}P\},$ and $^{31}P\{^{1}H\}$ NMR. The reaction was completed within 10 min, and no intermediate compounds were observed. Continued heating for 16 h resulted in the formation of Rh(H){2,6-(CH₂P^tBu₂)₂C₆H₃}I and ethylene (~95%), as judged by ¹H and ³¹P NMR and GC analysis of the solution.³⁵ The reaction was also performed in a sidearm flask to allow quantitative analysis of the gas phase by GC. ¹H NMR (C₆D₆): δ 0.89 (dt, ${}^{3}J_{\text{RhH}} = 2.4$ Hz, ${}^{3}J_{\text{HH}} = 7.2$ Hz, 3H, RhCH₂CH₃), 1.16 (vt, ${}^{2}J_{PH} = 6.1$ Hz, 18H, C(CH₃)₃), 1.42 (vt, ${}^{3}J_{PH} = 6.3$ Hz, 18H, C(CH₃)₃), 2.38 (m, ${}^{2}J_{RhH} = 2.7$ Hz, ${}^{2}J_{HH} = 7.2$ Hz, ${}^{3}J_{PH} = 6.1$ Hz, 2H, RhCH₂CH₃), 3.12 (ABq, $\Delta AB = 9.2$ Hz, ${}^{2}J_{HH} = 17.8$ Hz, ${}^{2}J_{PH} = 3.7$ Hz, 4H, CH₂P), 7.1 (m, 3H, ArH). ³¹P{¹H} NMR (C₆D₆): δ 52.63 (d, ${}^{1}J_{\text{RhP}} = 122.5 \text{ Hz}$). FD-MS: (M⁺ – I) 524.8.

Formation of $Rh(\eta^{1}-N_{2})$ {2,6-(CH₂P^tBu₂)₂C₆H₃} (7). To a solution of 3 (40 mg, 0.071 mmol) in THF (5 mL) was added excess of NaH (35 mg, 1.3 mmol). The suspension was stirred for 24 h at room temperature. The mixture was filtered and dried under vacuum. The resulting solid was dissolved in benzene (10 mL), and the solution was filtered again. Complex 7 was obtained as a yellow air-sensitive solid after evaporation of the benzene. Passing CO through a benzene (3 mL) solution of 7 for 15 min resulted in quantitative formation of Rh-(CO){2,6- $(CH_2P^tBu_2)_2C_6H_3$ }, as judged by ¹H and ³¹P NMR and IR.³⁰ ¹H NMR (C₆D₆): δ 1.26 (vt, ²*J*_{PH} = 6.3 Hz, 36H, C(CH₃)₃), 3.15 (vt, ${}^{2}J_{\text{PH}} = 3.7 \text{ Hz}, 4\text{H}, \text{CH}_{2}\text{P}), 7.1 \text{ (m, 3H, ArH)}.$ ${}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR (C}_{6}\text{D}_{6}):$ δ 35.18 (vt, ${}^{2}J_{PC} = 6.6$ Hz, C(CH₃)₃), 36.36 (dvt, ${}^{2}J_{RhC} = 6.6$ Hz, ${}^{1}J_{PC}$ = 10.1 Hz), 120.73 (t, J_{PC} = 9.8 Hz, Ar), 123.57 (s, Ar), 128.53 (s, Ar), 157.79 (dt, $J_{RhC} = 3.6$ Hz, $J_{PC} = 12.8$ Hz, Ar). ³¹P{¹H} NMR (C₆D₆): δ 81.01 (d, ¹J_{RhP} = 157.9 Hz). IR (film): ν = 2133 cm⁻¹, (s, $N \equiv N$

Hydrogenolysis of the Ar–C Bond in 15. A THF solution (30 mL) of **15** (60 mg, 0.066 mmol) was loaded into a 90 cm³ Fischer Porter pressure vessel, pressurized with H₂ (20 psi), and heated for 12 h at 80 °C. The gas phase was removed using a vacuum line and analyzed quantitatively by GC. The reaction mixture was concentrated to 5 mL. Addition of cold pentane (20 mL) resulted in precipitation of an orange powder, which was filtered off and dried under high vacuum to give >90% yield of **17**. The analogous complex **16**, lacking the two methyl substituents in the 3 and 5 positions of the aromatic ring, has similar spectroscopic features.²⁵ ³¹P{¹H} NMR (THF): δ 46.6 (dd, ¹*J*_{RhP} = 111.1 Hz, ²*J*_{PP} = 24.5 Hz, 2P), 19.8 (dt, ¹*J*_{RhP} = 82.2 Hz, 1P). Addition of MeLi (1.2 equiv) or KO'Bu (5 equiv) to the

product solution at room temperature resulted in quantitative formation of $Rh\{2,6-(CH_2PPh_2)_2-3,5-(CH_3)_2-C_6H\}(PPh_3)$, as judged by ¹H and ³¹P NMR.

Thermolysis of Complex 12. A toluene- d_8 solution (1 mL) of **12** (10 mg) was loaded into a 5-mm screwcap NMR tube and heated for 3 days at 120 °C. ¹H and ³¹P NMR analysis showed the quantitative formation of **13**.²⁵ Addition of an authentic sample to the solution resulted in overlap of signals in ¹H and ³¹P NMR. Ethylene was observed by ¹H NMR and GC. The reaction was also performed in a sidearm flask to allow quantitative analysis of the gas phase by GC.

Formation and Thermolysis of Complex 19. To a toluene- d_8 solution (1 mL) of 18²¹ (10 mg, 0.024 mmol) was injected 3 µL (0.048 mmol) of CH₃I (or ¹³CH₃I) by a microsyringe at room temperature. ¹H and ³¹P NMR analysis of the reaction mixture after 30 min showed exclusive formation of 19 and PPh₃. The red solution was dried under vacuum to remove excess of CH₃I, and the resulting red oil was redissolved in toluene- d_8 (1 mL). The product was not separated from PPh₃. Complex 19 is stable at room temperature in solution but slowly decomposes at 70 °C (24 h for ~90% decomposition). Compounds indicative of Ar-C bond cleavage were not observed. ¹H NMR (toluene- d_8): δ 7.4–6.5 (m, ArH of **19** and PPh₃), 3.3 (left part of ABq, ${}^{2}J_{HH} = 13.7$ Hz, ${}^{2}J_{PH} = 3.8$ Hz, 2H, CH₂P), 2.7 (right part of ABq, ${}^{2}J_{HH} = 13.7$ Hz, ${}^{2}J_{PH} = 4.4$ Hz, 2H, CH₂P), 2.25 (td, ${}^{3}J_{PH} = 8.3$ Hz, ${}^{2}J_{RhH} = 1.1$ Hz, 2H, ArCH₂Rh), 1.65 (m, ${}^{3}J_{PH} = 4.5$ Hz, ${}^{2}J_{RhH} =$ 3.1 Hz, 3H, RhCH₃), 1.54 (s, 6H, ArCH₃). ³¹P{¹H} NMR (toluene d_8): δ 28.9 (d, ${}^{1}J_{RhP} = 127.5$ Hz, **19**), -4.71 (bs, PPh₃). ${}^{13}C{}^{1}H$ NMR (toluene- d_8): δ 139–126 (CAr of **19** and PPh₃), 27.71 (vt, ${}^1J_{PC} = 12.2$ Hz, CH₂P), 22.41 (bd, ${}^{1}J_{RhC} = 15.8$ Hz, ArCH₂Rh), 19.45 (s, ArCH₃), 7.90 (bd, ${}^{1}J_{\text{RhC}} = 30.8$ Hz, RhCH₃). FD-MS: $m/z = 760 (M^{+})$, correct isotope pattern.

X-ray Crystal Structure Determination of Complex 16. A crystal was analyzed (at 298 K) on a PW1100/20 Philips four-circle computercontrolled diffractometer, Mo K α ($\lambda = 0.710$ 69 Å) radiation with a graphite crystal monochromator in the incident beam. The unit cell dimensions were obtained by a least-squares fit of 24 centered reflections in the range of $11 \le \theta \le 14^\circ$. Intensity data were collected using the $\omega - 2\theta$ technique to a maximum 2θ of 46°. The scan width, $\Delta\omega$, for each reflection was $1.00 + 0.35 \tan \theta$, with a scan speed of 2.1 deg/min. Background measurements were made for a total of 20 s at both limits of each scan. Three standard reflections were found. Intensities were corrected for Lorentz and polarization effects. All non-hydrogen atoms were found by using the SHELXS-80 direct method analysis.⁵⁸ After several cycles of refinements,⁵⁹ the positions of the hydrogen atoms were calculated, except HRh, and added to the

 Table 1.
 Crystallographic Data for Complex 16

formula	$C_{50}H_{43}P_3RhCl\cdot(CD_3)_2CO$
fw	880.79
space group	$P2_1/n$
a, Å	16.052(5)
b, Å	20.434(5)
c, Å	14.519(2)
β , deg	104.43(2)
$V, Å^3$	4612.1(9)
$D_{\rm calcd}$, g cm ⁻³	1.34
<i>T</i> , K	298
Z	4
μ (Mo K α), cm ⁻¹	5.61
no. of unique reflections	6637
no. of reflections with $I > 3\sigma(I)$	4667
R	0.031
$R_{ m w}$	0.039

refinement process. Refinement proceeded to convergence by minimizing the function $\sum w(|F_o| - |F_c|)^2$. A final difference Fourier synthesis map showed several peaks less than 0.3 $e/Å^3$ scattered about the unit cell without a significant feature. The discrepancy indices $R = \sum ||F_o| - |F_c||/\sum ||F_o||$ and $R_w = [\sum w(|F_o| - |F_c|)^2/\sum w(|F_o|^2]^{1/2}$ are presented with other crystallographic data in Table 1. An ORTEP view, selected bond angles, and distances of the molecular structure are shown in Figure 2.

Acknowledgment. This work was supported by the U.S.– Israel Binational Science Foundation, Jerusalem, Israel, and by the Minerva Foundation, Munich, Germany. D.M. is the holder of the Israel Matz Professorial Chair in Organic Chemistry. We thank Dr. S. Cohen (the Hebrew University of Jerusalem, Jerusalem, Israel) for performing the X-ray structural analysis.

Supporting Information Available: Tables of crystallographic data and structure refinement, atomic coordinates, bond lengths and angles anistropic displacement parameters, and hydrogen atom coordinates for **16** (11 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA982345B

⁽⁵⁸⁾ Sheldrick, G. M. *SHELXTL*, An integrated system for solving, refining and displaying crystal structures from diffraction data; University of Göttingen, Germany, 1980.

⁽⁵⁹⁾ All crystallographic computing was done on a VAX computer at the Hebrew University of Jerusalem, Israel, using TEXSAN structure analysis software.